The era of graphs and spreadsheets as a way of thinking about analytics is beginning to approach its end. Predictive analytics, along with associated artificial intelligence (AI) and machine learning technologies, are changing the way in which we deal with data. These tools are becoming more accessible, and ‘big data’ thinking is no longer limited to firms with billion dollar budgets.

Predictive analytics provides a glimpse into the future, as well as access to strategic insights that can open up new opportunities. Here are five ways you can put predictive analytics to use, and how you can change the way you think about data.

Qualifying leads

According to Forrester research[1], predictive analytics has found three main use cases for dealing with  leads. Specifically:

  1. Predictive scoring: This method analyzes how leads are responding to your marketing attempts and how likely they are to take action based on that information. In this way, you can more quickly identify which leads to focus more resources on and which to divert resources from.
  2. Identification models: This use case is an approach that focuses on comparing leads to customers who have taken actions in the past. In doing so, you can divert resources to those leads who are most promising based on previous actions they have taken, as well as identify new markets that you weren’t previously aware of.
  3. Personalization: In concert with predicting which leads are most likely to take which actions, the same data can be used to determine which leads respond best to which types of messaging. This advanced form of segmentation can take things deeper than simply splitting leads into groups – instead sending them much more personalized messages.

Read more from our friends at Search Engine Watch